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SUMMARY

It is well known that vehicles traveling at high speed excite the air
to high temperature, resulting in dissociation and ionization, so that

the air properties deviate considerably from those of a simple gas. Some
effects of these reactions are considered in this Report in relation to

the thermodynamic properties of the air, the transport coefficients, and
the diffusion of heat.

Methods are presented for calculating the thermodynamic properties of
air with good accuracy up to 15,0000 K and for pressures from 10-6 to
102 atmospheres.

SOMMAIRE

Ainsi qu'il est bien connu, le vol h grande vitesse de tout engin

provoque des temperatures 6ievees de 'air, donnant lieu en cons6quence
aux ph6nom~nes de la dissociation et de 1'ionisation, de sorte que les

caract6ristiques de l'air diff6rent sensiblement de celles d'un gaz simple.
I1 s'agit dans ce rapport de certains effets r6sultant de ces reactions
consid~r6s en fonction des propri6t6s thermodynamiques de 1'air, des
coefficients de transport et de la diffusion de chaleur.

L'auteur pr6sente des proc6d6s de calcul des caract6ristiques thermo-
dynamiques de 1'air, avec une bonne pr6cision pour des temp6ratures
s'e6levant ' 15. 000K et des pressions comprises entre 10-6 et 102 atm.
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NOTATION

R universal gas constant

p pressure

p density

T temperature

M 0  molecular weight at standard conditions

Z total number of moles from one mol of initially undissociated air

C I fraction of oxygen molecules dissociated

E2 fraction of nitrogen molecules dissociated

E 3 fraction of atoms ionized

KI equilibrium constant for reaction 02 - 20

K2 equilibrium constant for reaction N2 - 2N

K3 population - weighted average of equilibrium constants for reactions

0 - 0+ + e- and N - N+ + e-

xI  mol fraction of chemical species

H enthalpy per mol

S entropy per mol

Qt partition function for ith species

7 ratio of specific heats

c speed of sound

v velocity of flow

vi  velocity of flow at initial conditions

x distance

t time

r distance between atoms

0 collision diameter

V



mass diffusion diameter

r e

constants
D

k

e electron charge

a polarizability

77e total charge density

1viscosity

ul mean molecular velocity of ith species

Xi  mean free path of ith species

n particle concentration

K partial coefficient of thermal conductivity

heat flux potential

a thermal diffusivity (= k/pCP)

C coefficient of heat capacity

Pr Prandtl number

vi



THERMODYNAMIC AND TRANSPORT PROPERTIES OF

HIGH-TEMPERATURE AIR

C. Frederick Hansen*

1. INTRODUCTION

It is axiomatic that the. science of aerodynamics must be based on a good understand-
ing of the mndiu tbrough which vehicles fly. At subso-ic and low supersonic speuds
near the earth's surface, it is generally sufficient to assume that the atmosphere
behaves as an ideal gas and that the ratio of specific heats is a constant with a value

about 1.4. However, it is well known that vehicles traveling at high speed excite the
air to high temperature with the result that air properties deviate considerably from

those of a simple gas. For example, Figure 1 shows the major chemical reactions which
are produced in the stagnation regions of vehicles as a function of altitude and velo-

city. At about 3000 ft/sec, the vibrational energy of air molecules is excited.
Oxygen dissociation begins near 7000 ft/sec and nitrogen dissociation occurs at velo-
cities greater than 15,000 ft/sec. Single ionization of atoms becomes dominant near
escape velocity. The dissociation reactions are encouraged by low pressure, of course,
and the altitude dependence shown in Figure 1 is a consequence of this fact. Some
effects of these chemical reactions will be considered pertaining to the thermodynamic
properties of air, to some of the transport coefficients, and to the diffusion of heat

through gases.

2. EQUILIBRIUM THERMODYNAMIC PROPERTIES OF AIR

The equilibrium thermodynamic properties of gases can be calculated with good con-

fidence, provided the energy levels of the gas particles are accurately known, and a

number of such calculations have been tabulated for air. Perhaps the most complete
and exacting calculations are those performed by Gilmore' and by Hilsenrath and

Beckett 2. Both of these calculations are very exact in the sense that they take into

account many of the minor chemical components of air and small corrections to the
partition functions of the molecules. Logan and Treanor 3 have also prepared tables

of air properties for which all of the important components are considered. These
precise calculations involve multiple iteration procedures such that the labor involved
would be discouraging indeed, if it were not for electronic computers.

The content of the tabulations in References 2 and 3 has been summed up graphically
in the Mollier diagrams prepared by Feldman4 and by Moeckel5. Using such graphs one
can solve a number of important aerodynamic problems, such as finding the properties

of isentropic expansions or of non-isentropic shock discontinuities (see, e.g., Ref. 4,

6, 7. or 8).

For a number of reasons, it is desirable to have approximate, analytic solutions
for the thermodynamic properties of air in addition to the precise solutions mentioned

Chief, Physics Branch, National Aeronautics and Space Administration, Ames Research

Center, Moffett Field, California, U.S.A.
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above. From an inspection of the tabulated equilibrium concentrations of the chemical
species in air1 , it is immediately apparent that there are but four reactions of major
importance over a wide range of pressure and temperature. These are the dissociation

of molecular oxygen and of molecular nitrogen, and the ionization of atomic oxygen and
atomic nitrogen:-

0 -2 20 (1)

N2 - 2N (2)

0 0 + e- (3)

N -N + e (4)

With one exception, all other reactions yield concentrations which are of the order of
0.1%. or less, of the major components given by these reactions. The exception is the
formation of nitric oxide, which may become a sizable minor component of air at high
pressures (see Ref. 1). However, the heat of formation of NO is very nearly the
average of that for 02 and N2 - so the production of NO does not appreciably

change the balance between atoms and molecules. As a result, the thermodynamic func-
tions for air are not strongly influenced by this reaction.

Some distinctive features of the foregoing reactions are convenient'y summarized on
a graph of the compressibility as a function of temperature (Fig. 2). The compressibi-

lity is defined by the gas law

p /RT\
- = Mo (5)

where R is the universal gas constant, p, p and T are, respectively, the pressure,
density and temperature of the gas, and M. is the molecular weight at standard con-
ditions. To the approximation that the particles obey the ideal gas law, Z represents
the total number of moles formed from a mol of initially undissociated air. Since air
contains about 207 oxygen, the compressibility approaThes 1.2 when oxygen dissociation
is complete. It increases further to about 2.0 when nitrogen dissociation finishes the
conversion of molecules into atoms. Single ionization of the atoms doubles the number
of gas particles again, so that Z approaches 4.0 when these reactions are complete.
Note that the slope of Z gets very small between reactions, indicating that one
reaction is essentially complete before the next begins. This follows from the fact
that the dissociation energy of nitrogen (9.76 ev) is nearly twice the dissociation
energy of oxygen (5.08 ev), while the ionization energy of nitrogen atoms (14.54 ev)
and oxygen atoms (13.61 ev) is nearly three times as great. Thus the different reac-
tions proceed in different intervals of temperature, and for purposes of approximation
it can be assumed that they are independent of one another. The two ionization reac-
tions occur simultaneously but with nearly the same energy changes, so for this case
it is assumed that. once the air becomes dissociated, all atoms constitute a single
species which has the population-weighted average properties of the nitrogen and
oxygen atoms.

We shall review briefly some of the essential relations involved in calculating

the approximate thermodynamic properties of air. Further details may be found in
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Reference 9. If E1  is the fraction of oxygen molecules which are dissociated, 6 2

the fraction of nitrogen molecules dissociated, and E 3 the fraction of atoms which
are ionized, then the compressibility is

Z = I + 6 + E2 + 2E3  (6)

The reactions are assumed to be completely independent and, to the order of approxima-
tion being considered, it seems adequate to take the ratio of nitrogen to oxygen in
air as 4 tn 1. Then one obtains

-0.8 + 0.64 + 0.8 (+ (a

=l (7a)
2( +4)

-0.4 + 0.16 + 3.84(1 +

E2 2(+= (7b)

K2
1

C 3 =(7c)
v/(1 + p/K3)

where K and K2 are, respectively, the equilibrium constants for reactions (1) and
(2) in terms of partial pressures; K3  is the population-weighted average of the
equilibrium constants for reactions (3) and (4). The equilibrium constants are calcu-
lated from partition functions which include only'those energy levels up to 6 kT (8.76
ev at 15,000K). The energy, entropy and specific heats of the components are also
calculated from these abbreviated partition functions.

The form of Equations (7a) through (7c) is suitable for constant pressure calcula-
tions. For constant density calculations, these equations become

3.,2pRT

-1 + 1 +

8pRT 
(8a)

K MN10

+ 12. 8pRT-lI+ I +
K21%

oC 2  - (8b)
2 8pRT

K 2M0
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8pRT
-1 + 1 -

V K3M S0

:PR (8c)
4pRT

At this point it may be remarked that the formation of NO can be included in the
closed form approximations if one is willing to go to the trouble of solving cubic
equations rather than the foregoing quadratic expressions.

The mol fractions x1  of the chemical species are given by

0.2 - 1

0 - (9a)

0.8 - a2
x N (9b)

2 - 0.41 3

x = (9c)

2e2 - 1.6E3
X = (9d)

2E3
XN+ 0+ Xe- - (9e)

z

and the enthalpy and entropy for the mixture are found by a simple summation over all

the species

d(In Qi)
- L xi(10 )

RT i din T)

s i d(In Q In (11)/X 1 (in Q, + u i) - xjlIn i ) n-]11R LL \ In T)/P

The symbols H and S refer to the enthalpy and entropy per mol of particles and
Q1 is the partition function for the ith species at the standard state pressure po.

Note that the N+ and 0+  fractions should be considered separately for the term
xi(ln x,) which appear in the entropy (Eq. 11), though they may be combined elsewhere.

The accuracy of the foregoing approximations is indicated in Figures 3(a) through
3(d). Figure 3(a) shows the percentage discrepancy between the compressibility given

by Equation (6) and the solutions of Hilsenrath and Beckett
2 for densities of 102 , 10- 2

and 10- 6 Amagat. Figures 3(b) and 3(c) show the same comparison for enthalpy and entropy.
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It can be seen that the discrepancies are generally less than 5%, sufficient for many

engineering purposes. The largest discrepancies occur at high densities where there

is some overlapping of the reactions and where the formation of nitric oxide should be

taken into account for greater accuracy.

The specific heats of air may be found by taking the derivatives of energy and

enthalpy. The approximations lose accuracy with each successive order derivative, of

course, but still the agreement is generally within 107o of the iteration solutions
performed by Logan 3 . Fortunately. one does not usually use the specific heats directly

in aerodynamic calculatinns anvway, but rather the ratio of specific heats, ^X. As

shown in Figure 3(d), the approximations preserve the accuracy of this quantity within

a few percent.

The speed of sound, c, will be defined by

c2 I/s (12)

which may be transformed to

+ -

2In T)/ pp - /ln Z)\ (13)

\"3( In T)/'P

Using this quantity, one can evaluate the integral

I = 1 dp (14)

which is useful for determining the Riemann invariants v ± Z for one-dimensional,

isentropic flow. The change in velocity along the characteristic directions in such
gas flow is given 10 by

v-v 1  = (LI -1) (15)

where the subscript i refers to initial conditions and the positive sign corresponds
tn thp positive characteristic direction

dx
- = v + c (16a)
dt

and the negative sign to the negative characteristic direction

dx
- = v - c (16b)
dt
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in the time-distance (x,t) plane. The integration of Equation (14) Is along a

constant isentrope, and the solutions are performed by iteration with an electronic

computer inasmuch as entropy is not one of the independent variables in the analytic
expressions for the gas properties. Where very small changes in flow properties are

desired, as in the construction of a fine net characteristics solution, it is more
convenient to work with just the integrand of Equation (14). Small changes in flow

velocity are approximately given by

v -v I  (17)Ap

where the algebraic sign of the pressure change -Ap corresponds to the sign of the

characteristic direction. The quantity

S= (P- (18a)\cp /

is plotted in Figure 4 normalized by the ideal air value

LT
= - (18b)

where y is taken equal to 1.4. The ratios are given as functions of temperature for

isentropes ZS/R equal to 30, 40, 50, 60,.70, 80, 90 and 100. Values for intermediate

entropies may be estimated reasonably well by interpolation. Numerical values of I/I*

and 1 are tabulated in Reference 11.

3. TRANSPORT PROPERTIES OF AIR

Next consider some additional properties of air needed for aerodynamic calculations,

namely the transport properties viscosity and thermal conductivity. In estimating
these properties, one is faced with two alternatives. The transport coefficients may

be calculated by the fairly rigorous but complex method of Chapman and Enskog 12 or by

the simple but approximate kinetic theory of hard, elastic spheres13 . If good esti-
mates of the interparticle potentials were available, so that the Enskog collision

integrals could be determined accurately, the choice would immediately fall on the

former method, of course. However, at present the potentials are uncertain enough so

that it is doubtful whether the inherent accuracy of the more rigorous method could

be realized. Inasmuch as encouraging progress is being made on quantum mechanical
calculations of the interparticle potentials (see, c,g., Refs. 14 through 17), it has
been decided to defer the labor of making the rigorous solutions until all of the

important potentials are available. In the meantime, some estimates based on the

simple kinetic theory have been prepared. It may be noted that this elementary
approach need not be discounted unduly, for it does give reasonably good answere where

experimental evidence is available for comparison.

The first step is the calculation of mean free paths from the effective collision

diameters. Hirschfelder and Eliason' have found that for a wide variety of different

attractive potentials, the collision integral method corresponds to an effective hard
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sphere diameter equal LA) the distance where the interparticle potential is about -0.6
MT. In the case of repulsive potentials, the effective diameter for momentum and
energy transport is the distance between the atoms when the potential is about 0.9 kT.
while for mass diffusion it occurs at about 1.6 kT. These simple criteria might be
applied if only the potentials were known. Unfortunately, in the case of atom-atom
and atom-ion collisions, the picture is complicated by the fact that the particles may
approach one another along any one of a number of different potentials, depending on
how the electron spin vectors happen to add up. For example, Figure 5 shows the
qualitative form of the potentials for collisions between two neutral, ground-state

nitrogen atoms as a function of the distance r between atoms19 . The lowest lying
potential, 'X, has the lowest total electron spin and it is known quantitatively from
the vibrational energy levels observed spectroscopically for the stable ground state
molecule. Since the higher lying potentials are not known quantitatively, we are
forced to estimate the average effective size from the single known potential. For
this purpose, it has been assumed that the average effective collision diameter is the
distance between the atoms when U('X) equals -kT for the case of momentum and energy
flux, and -2 kT for mass diffusion. This procedure undoubtedly overestimates the
size of shallow intermediate potentials (such as 3X and 5X - Fig. 5), On the
other hand it underestimates the relatively long-range forces between particles in
excited states. The very steep repulsive potentials (such as 7 of Fig. 5) are
roughly symmetrical with the lowest attractive potential over the long-range part of
the internuclear separation distance, so this potential is probably correctly accounted
for to a first approximation.

To be more specific, the following formulas were used for calculating collision
cross sections (a Sutherland type cross section is used for oxygen and nitrogen
molecules):

S C
= 1 +- (19)

T

where the constant C is 1120 K and S., the molecular cross section at very high
temperature, is 3.14 x 10-is cm2. The lowest lying atom-atom and atom-ion potentials
may be approximated by the Morse function

1 1 - e(- 1 (20)
D

whence the collision diameter for momentum and energy transfer, a, is given by

r e (21a)-- = 1 - I (1 1 - D-(2 n

and the diameter for mass diffusion, ', is

I 1 - In L (21b)
re /

The constants re., 6, and D/k for the various types of collisions are taken from
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Herzberg'9 and these are listed in the following table:

Colliding D/k re

particles (oK) /3 (Angstroms)

0-0 59,000 3.24 1.207

N-N 113.200 2.96 1.094

N-0 75,400 3.13 1.151

O-0+  75.20G 3.18 1.123

N-N +  101,200 2.94 1.116

For electron-atom collisions, the atom becomes polarized by the approach of the
electron and a charge-dipole type of interaction results. The classical interaction
energy of the induced dipole with the electron's field is

e2a

U - (22)2 r4

where e is the electron charge and a is the polarizability. The polarizability is
taken to be 13.2 x 10-25 cm3 and 10.3 x 10-2Scm3 for oxygen and nitrogen atoms, respect-
ively. The quantum mechanical cross sections calculated by Hammerling, Shine and
Kivel 16 show that the Hartree electrostatic field and the exchange integrals both
contribute to the interaction energy as well as the polarization. However, they find
that these two effects roughly compensate one another, and so these corrections will
be omitted for the approximation being considered here.

Finally, the ion-ion and ion-electron cross sections are calculated from the simple

Coulomb potential between two charges. The correction for the charge shielding effect
given by Cohen, Spitzer and Routly 20 makes the cross sections weakly dependent on
density as follows:

(e252 3 JO3T 3 ) 1

S= 7 In - (23)
\kT ) 2e 3 

rne

where n. is the total charge density, both positive and negative.

The viscosity was calculated from the simple summation formula for a mixture of
hard spherical molecules- 3:

pii:- (24)
32 /.i
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where ui  is the mean molecular velocity of the ith species and the mean free path
X, is given by

= /(25)

2n xjSij i +mj 12

J i M J/

where n is the particle concentration. Equation (25) differs from Kennard's expres-
sion for the moan free path'3 to account for the fact that the momentum of particle i
relative to particle j is decreased by the fraction 2(1 + Mi/MJ)-1  on each elastic
collision with particle j. This factor multiplies each term of the summation in the
denominator of Kennard's formula, and the result is the same as obtained in the more
rigorous matrix formulation for the viscosity of mixtures2 1 if the off-diagonal ele-
ments of the matrix are set equal to zero. This is valid in a first approximation at
least, as the off-diagonal elements are small compared to the trace elements of the
matrix. Buddenberg and Wilke 2 2 have shown that experimental data on the viscosity of
mixtures can be reproduced by empirically adjusting the numerical factor 2 before
those terms of the summation in Equation 25 which involve unlike particles (i / j).
However, in view of the other approximations involved in the present analysis, it did
not seem warranted to use a more sophisticated formulation for the viscosity of the
mixture than given above. The estimated viscosities are shown as a function of tem-
perature for pressures of 100, 10-2 and 10-" atmospheres in Figure 6. The ordinate is
the ratio of the coefficient given by Equation (24) to the value given by the Suther-
land formula:

V/_gm

o = 1.462 x 10-5  (26)112 cm sec
1 +

T

where T is in degrees Kelvin. Presumably, Equation (26) is about the viscosity which
the gas would have if air molecules remained inert. The effect of the dissociation
reactions is to increase slightly the ratio j/". However, the charged particles have
very large cross sections when they collide with one another, so the viscosity is
reduced to comparatively low values at the higher temperatures where ionization becomes
predominant.

A theory for the thermal conductivity of a chemically reacting gas was first out-
lined by Nernst 23. The theory is used here in the form subsequently developed by
Hirschfelder 24 

- in which the energy transfer through the gas is treated in two inde-
pendent lar'ts. The first mode of energy transfer is by molecular collisions just as
for ordinary non-reactive gases. The second mode of energy transfer is by diffusion
of the molecular species and the reactions which occur as the gas tends to maintain
itself in chemical equilibrium. For the first mode, use is made of Eucken's assump-
tion 25 that the internal energy is distributed among the gas particles independently
of the velocity distribution, so that the partial coefficient of thermal conductivity

takes the form

Kin -5 (27)
I
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Hirschfelder formulates the reactive contribution to thermal conductivity in terms of
the multicomponent diffusion coefficients which are somewhat difficult to estimate.

However, Butler and Brokaw26 have shown that the reactive coefficient of conductivity

may be expressed in terms of the ordinary binary diffusion coefficients, D*

Kreactive - \d (In ) (28)

(aix J - alxi)1 J XiDIJ

where the apjs are the stoichiometric coefficients of the components A, when the

chemical reaction is written in the form

7 aA,= 0 (29)

The diffusion coefficients are calculated by elementary kinetic theory as follows
1 3:

1 8(2 MiMJ

Dij 3 iT M1 + M n) (30)

The total coefficient of thermal conductivity given by Hirschfelder2 is just the sum

of the inert and reactive parts:

K K inert +Kreactive (31)

The estimated coefficients of thermal conductivity are shown for pressures of 100,
10-2 and 10-4  atmospheres as a function of temperature in Figure 7. Again the

ordinate is normalized by an inert gas value given by

19 R
K0 - 0 (32)

4 Mo

The thermal conductivity goes through pronounced maxima at temperatures where the
chemical activity is intense. As shown in Figure 7, the coefficient may become one

to two orders of magnitude lar-er -'in the inert gas value. The maxima occur at about
the same temperature where the compressibility changes most rapidly with tetlperature
(Fig. 2) and therefore where the specific heats are a maximum. In fact, Hirschfelder 2"

has noted that the thermal conductivity should be approximately proportional to the
specific heat for the chemically reacting gas just as it is for the inert gas (Eq. 27).
It follows that the Prandtl number should not be grossly affected by the reactions, at
least up to the temperature where the ionizaticn reactions occur. The highly ionized
gas is a mixture of very light-weight particles (electrons) with heavy particles (ions)
and the effect of this mass difference is to increase greatly the ratio of thermal

conductivity to viscosity. Thus, if the ionized gas is everywhere in thermal equili-
brium, it should have a very small Prandtl number, of the order of 10- 2 (see Ref. 9).
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Some very approximate assumptions are used in the foregoing calculations of the

transport properties, and it is obviously desirable to check them with experiment in
some manner. It seems difficult to obtain the transport coefficients directly by
experiment at the very high temperatures involved, but it has been possibl? to evaluate
a quantity called the heat flux potential by combining some results of shock tube

experiments with the theory of heat diffusion through gases. The heat flux potential

is defined as

K dT (33)

so it represents a transport property. This integral has the quality of a potential,

since the heat flux at any point in a medium is just gradef). The heat flux potential
is the natural parameter to use as the dependent variable in problems involving heat

diffusion through media where the thermal conductivity is a function of tempe-ature,
as it is for gases. In terms of 95, the heat diffusion equation takes the familiar

form

aV 20 = 0 (34)at

where a is the thermal diffusivity, k/pC . Note that the diffusivity cannot be

considered a constant as is usually done in the classical solutions of the heat dif-
fusion equation (see Ref. 27, for example).

Consider now the one-dimensional heat flow through a semi-infinite gas medium. We
shall restrict ourselves to the case where the initial conditions and the boundary

conditions are constants; that is, the initial potential throughout the gas is the

constant designated by 0, and the boundary value is the constant cko (see Fig. 8).
The diffusivities are a, and a0, respectively. Normalized coordinates will be used
such that ¢o and a0  are both taken to be unity. The results can easily be general-

ized, of course, to account for arbitrary units of these boundary conditions.

The idealization of constant initial and boundary conditions will be approximately

realized in a physical situation where the reservoir is a slab of material with a very

large heat capacity and a large thermal conductivity, such as a metal. Then the wall
can soak up heat fast enough to maintain nearly constant conditions at the interface.

The slab might be suddenly immersed in a constant temperature gas, for example; or,
alternatively, the gas might be heated suddenly by a plane shock wave reflecting from

the solid interface.

Boltzmann2 8 has shown, with perfect generality, that the solution to this problem

may be expressed as a function of x//t. Therefore, the time and distance variables
are transformed to the single dimensionless parameter

x
y =V(4aot)

where a is the diffusivity of the gas at the boundary; a0 is unity, of course,

in the present normalized coordinate system, but this is not an essential feature of
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the transformation. In terms of this parameter, y, the partial differential equation
of heat conduction becomes the dimensionless, total differential equation

a 0 + 2y 0 (36)
dy 2  dy

The factor 4 in the parameter y (Eq. 35) is an arbitrary stretching factor. It
is chosen merely so that the solutions to Equation (36) reduce to the usual error
function form when the diffusivity is constant, that is, when a equals a0. The
merit in using the normalized form for the potential 4 (that is, P/o) is that one
set of integrations for Equation (36) will suffice for all possible boundary conditions.
All that is required before one proceeds with the integration is that the diffusivity,
a, be evaluated. Two cases will be considered, one in which the gas is ideal and
inert, and the second in which the gas is in local equilibrium but is chemically active
with a large heat of reaction.

According to the kinetic theory of inert gases13 , the coefficient of thermal con-
ductivity is approximately proportional to a power b of the temperature, where b
is close to Y. Thus the integral of thermal conductivity is proportional to the
(b+l)th power of temperature:

' = JK dT a Tb+l (37)

Now the thermal diffusivity equals the conductivity divided by the beat capacity

per unit volume, Cp. Since the density p is inversely proportional to temperature,
for an ideal gas, the diffusivity is proportional to the (b+l)th power of temperature
also:

K b+l
a = T a (38)

Cp

It follows that diffusivity is proportional to the potential (f, and in the present
normalized coordinates this means that

a =(39)

Sometimes a linear relation between a and 4' with a finite intercept will best
fit measured values, but this can always be transformed to the direct proportionality
of Equation (30) by appropriate adjustment of the lower limit of the integral,
Equation (33). Generally, this limit will be close to absolute zero.

It may be reaiarked that even if one accounts for the variations of heat capacity
which occur in a real gas, the preceding relations are valid to the order of approxi-
mation that Prandtl number is a constant. This can be seen from the fact that diffu-
sivity is just the kinematic viscosity divided by the Prandtl number:

a = (40)

Pr

and the kinematic viscosity is again approximately proportional to the (b+l)th power of
temperature, at least in gases composed of neutral particles.
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When the result of Equation (39) is used, the heat diffusion equation takes on the
inocuous looking form

+ 2y- 0 (41)
dy 2  dy

Analytic solutions to Equation (41) are known, but none which satisfies the boundary
conditions, namely:

= 1 (42a)
lime$ - €

y- X (42b)

This is somewhat frustrating in view of the deceptively simple appearance of the non-
linear Equation (41). However, it is relatively easy to integrate the equation
numerically, starting from a given value of the boundary derivative, ¢fl = (4/dy)o,
and terminating as the solution asymptotically approaches a limit. 4k. The solutions
are something like error functions stretched slightly out of shape. Three of these
solutions are shown in Figure 9 as a function of y/4.. The solutions f are shown
divided by the error functions 1 + (4, - 1)erf y/v/t . The k functions rise more
steeply than the error functions near the orgin, go through a maximum deviation, then
approach the error function as a limit.

The value of kh, is uniquely related to the derivative at the origin, <P. This
relation is shown in Figure 10. The derivative ¢f is equivalent to a dimensionless
heat flux at the boundary, while the normalizing function, 1 + vfi,&70, is the value
which 4, would have if diffusivity were a constant. We shall return to this relation
between k, and qb after considering the case of the chemically reacting gas.

A chemical reaction in the gas behaves like a reservoir which soaks up heat as
temperature is increased, and liberates heat when temperature drops. Consequently,
the specific heat is very large if the heat of reaction is large compared to RT.
Hirschfelder 2" has shown that the coefficient of thermal conductivity for gases in
local equilibrium is also very large; in fact. it is approximately proportional to
the specific heat. Thus, the Prandtl number is relatively constant and the diffusi-
vity is a function of temperature which is not greatly affected by the chemical
reaction. The integral of thermal conductivity, on the other hand, is greatly increased
as a result of the reaction. This situation is illustrated in Figure 11.

The diffusivity increases linearly with (t up to the point where the chemical
reaction occurs, there it flattens out until the reaction is about complete, then it
increases again in a more or less linear manner. The solid lines are the previously
discussed theoretical estimates for air in which oxygen dissociation occurs. The
pressure dependence of the curve for k less than Uc has been removed by normal-
izing both ordinate and abscissa with the factor €c:

Tc b+i 
(3¢c \0/ 43
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where To is the boundary temperature, and Tc is the temperature where the thermal
conductivity is a maximum, that is. where the diffusivity is most nearly independent
of the conductivity integral. The temperature Tc may be calculated from Equation (28).

It should be noted that the calculation of the relation between diffusivity and the
conductivity integral does not depend on precise numerical values of the transport
coefficients. For example, although the estimate shown for air in Figure 11 is based
on simple kinetic theory and very approximate collision cross sections, the corrections
introduced by more exact calculations affect both the diffusivity and the conductivity
simultaneously in such a way that the functional relation between the two is Maintaind.

The relation for reacting gases in general will be similar to that for air. The
dashed curve on Figure 11 is a limit which is approached as the heat of reaction becomes
very large. This limiting relation has been used in the integrations which follow, that
is. a is assumed to equal ¢ up to the point €c and thereafter is taken to be
constant. Up to the point 95 then, the solutions are the stretched-out error func-
tions which were discussed earlier and which are shown in Figure 9. At 0c these
solutions are joined by the solution for constant diffusivity which has a matching
slope at the junction, (&t/dy)c:

¢ : + iexp - -erf- - erf - (44)

In Figure 12, the limit of the potential ¢ is shown for a reacting gas as a
function of the boundary heat flux, Of. The solution now depends on the value of
€c, which in turn depends on the boundary temperature, the pressure, and the chemical
reaction being considered. For example, in the case of air and a boundary temperature
of 00 0, the values 20, 40 and 60 for at0 correspond to pressures of about 10-, 100

and 102 atmospheres, respectively. The solutions for values of (k corresponding to
other pressures and different boundary temperatures can be obtained fairly accurately
by interpolation between the numerically integrated solutions such as the curves
plotted in Figure 12. The inert gas solution (Fig. 10) corresponds to €c equal to
infinity (Fig. 12). It should be noted that these solutions can only be used up to
the point where the chemical reaction goes to completion. Beyond this, the increase
in diffusivity must again be taken into account. The domain of validity is a charac-
teristic of each specific reaction. Within this limitation, the curves of Figure 12
apply to chemically reacting gases in general.

The above solutions have been put to use, in conjunction with experiment, to evalu-
ate the heat flux potential as a function of temperature29'30 . In this experiment, a
plane shock wave is reflected from the end wall of a shock tube. The heat flux to Lhe
wall is measured, and this fixes the abscissa for the graphical solution on Figure 12.

The temperature at the wall and the pressure of the gas after the shock reflection
determine the value of (tc (see Eq. 43). Hence the value of the ordinate in Figure

12 is fixed, and the value of 4t, is determined. The temperature of the gas associa-
ted with this heat flux potential 4t is taken to be the equilibrium temperature after
the shock reflection, and this is a known function of the measured shock velocity.
This procedure, of course, implies that the experiments are conducted under conditions

where the chemical relaxation times are short compared to the test interval.
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Results of the experiments and calculations are shown in Figure 13. The heat flux
potential is shown divided by the inert gas value, where the coefficient b is taken
to be 1/2

2 (T3/2 ca]
Kinert - T[-] 3.2 x 10-6 T3 1 2 (45)

/3 ) cm sec

and where T is in degrees Kelvin. Thus the ratio d/kinert should be unity if the
coefficient of thermal conductivity is proportional to the 1/2-power of temperature.
This appears tu be approximately true up to the temperature where oxygen dissociation
begins. At the pressures involved in the present shock tube experiments, this occurred
at about 25000 K. At higher temperatures, the heat flux potential becomes more than
twice as large as the inert gas value as a result of the dissociation of oxygen. The
solid curve on Figure 13 shows the theoretical heat flux potential, based on the esti-
mates for the coefficients of thermal conductivity. The agreement between the experi-
ment and theory is about as good as the scatter in the data and is somewhat better than
the uncertainty expected of the theory. The small deviation from inert gas behavior
which occurs just before the dissociation reaction has been explained 30 as the result
of small increases in the thermal conductivity integral due to vibrational energy
excitation and to formation and ionization of nitric oxide. The theory and experiment
appear to agree on the large change due to oxygen dissociation, and it is believed that
the theoretical estimates may represent a reasonable approximation to use for some
engineering purposes. However, it is clear that the experimental results give merely
a necessary but not sufficient check on the validity of the approximate methods used
to evaluate the transport coefficients. It may be noted that the potential shown in
Figure 13 is not a constant pressure function but follows the particular progression
of pressures obtained with the various strength shock waves produced for the experi-
ment. The theoretical potentials are shown in Figure 14 for temperatures up to 80000K
and for constant pressures from 102 to 10-4 atmospheres. Interpolations can be made
approximately in proportion to the logarithm of pressure.

4. CONCLUDING REMARKS

To summarize, some methods have been outlined by which thermodynamic properties of
air can be approximated in closed form with an accuracy generally somewhat better than
5% or temperatures up to 15,0000K and for pressures from 10-6 to 102 atmospheres.

The solutions are analytic in terms of temperature and pressure or of temperature and
density as the independent variables. A single series of iterations suffices for
calculation of constant entropy properties.

The equilibrium mol fractions have been used for estimates of the viscosity and
thermal conductivity for air. These estimates are based on the elementary kinetic
theory of colliding elastic spheres where the size of the sphere is allowed to vary
with temperature so as to account for some functional dependence of collision cross
section on velocity. The coefficient of thermal conductivity integrated with respect
to temperature is a heat flux potential and is found to be the natural parameter to
use as the dependent variable in problems involving heat diffusion through gases.
This potential has been evaluated by experiment for air uip to 50000K, including the
effect of oxygen dissociation, and the results are found to agree reasonably well with
the theoretical estimates,
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